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Abstract
Scalable, solution-phase syntheses of metal nanowires are
enabling their increased use in electrochemical processes.
This review highlights recent results demonstrating how metal
nanowires can exhibit better durability and higher activity than
traditional metal nanoparticle electrocatalysts on carbon sup-
ports. Metal nanowires can also form interconnected two-
dimensional and three-dimensional (3D) networks that elimi-
nate the need for a carbon support, thus eliminating the
detrimental effects of carbon corrosion. Porous 3D networks of
nanowires can be used as flow-through electrodes with the
highest specific surface areas and mass transport coefficients
obtained to date, enabling dramatic increases in the produc-
tivity of electrochemical reactions. Nanowire networks are also
serving as 3D current collectors that improve the capacity of
batteries. The tunable surface structure and dimensions of
metal nanowires offer researchers a new opportunity to create
electrodes that are tailored from the atomic scale to the
microscale to improve electrochemical performance.
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Introduction
Metal nanowires are essentially sticks of metal with
diameters on the order of 100 nm or less and lengths
ranging from several to hundreds of microns. Some of
the earliest nanowires were synthesized by electrode-
position in nanoporous aluminum oxide [1e3], but this
method is difficult to scale. Around the turn of the
www.sciencedirect.com
century, researchers discovered that anisotropic, crys-
talline nanowires could be grown from metals with
symmetric, cubic crystal structures in a liquid solution, a
technique referred to as solution-phase or colloidal
synthesis [4]. This innovation allowed researchers to
produce nanowires at a much larger scale than was
previously possible [5e7], facilitating their use in a wide
variety of applications. Today, metal nanowires can be

produced from 23 different metals, including Ag [8,9],
Au [10e13], Cu [14e17], Pd [18,19], Pt [20,21], Ni
[22], and Pb [23,24]. The structure-dependent elec-
trical, optical, and chemical properties of metal nano-
wires are being explored across a wide range of
applications, including transparent conductors [25e27],
wearable electronics [28,29], chemical/biological
sensing and imaging [30e34], cancer therapy [30e
32,35], waveguiding [36], and electrocatalysis [37e
43]. The purpose of this review is to highlight recent
results demonstrating the role nanowires can play in the

advancement of electrochemical processes.
How nanowires grow— in brief
Solution-phase syntheses of metal nanowires start with
the reduction or decomposition of a metal precursor,

which results in the formation of small metal nano-
particles often referred to as a seed. Metal nanowires
grow from seeds via atomic addition or particle attach-
ment (Figure 1a). In atomic addition, the seed crystals
grow into nanowires by continuous deposition of metal
atoms at the ends of the growing nanocrystals. For
example, atomic addition to the {111} facets on the
faces of five-fold twinned decahedra (Figure 1b) [44]
leads to the formation of nanowires (Figure 1c) [45]
with pentagonal cross sections and five twin bound-
aries parallel to their longitudinal axis. As shown in

Figure 1d, the sides of pentagonal nanowires are
enclosed by five {100} surfaces, whereas the pentagonal
ends are covered by {111} facets. It has generally been
hypothesized that capping agents (e.g. poly-
vinylpyrrolidone for Ag [9] and hexadecylamine for Cu
[14]) preferentially adsorb to and inhibit atomic addi-
tion to the sides of the nanowire, leaving the ends open
to atomic addition. However, recent studies with Cu
single-crystal electrodes revealed that this hypothesis is
false for Cu nanowire growth [45,46]. In one case, it was
shown ethylenediamine acted as a facet-selective pro-
moter of Cu nanowire growth by removing surface oxide
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Figure 1

Solution-phase syntheses of metal nanowires. (a) Schematics of growth processes for atomic addition and oriented attachment. Images of (b) a five-fold
twinned Ag particle and (c) pentagonally twinned Cu nanowires. (d) Schematic of the structure of pentagonally twinned nanowires. (e) PtNi and (f) Au
nanowires grown via oriented attachment. (b) Reprinted with permission from Ref. [44]. Copyright 2007 The Royal Society of Chemistry. (c) Reprinted with
permission from Ref. [45]. Copyright 2018 American Chemical Society. (e) Reprinted with permission from Ref. [52]. Copyright 2017 AAAS. (f) Reprinted
with permission from Ref. [53]. 2016 American Chemical Society.
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more quickly from Cu(111) than from Cu(100) [46]. In
another case, single-crystal electrochemistry and density
functional theory (DFT) showed that chloride selec-

tively displaced hexadecylamine from Cu(111), thereby
increasing the rate of atomic addition to {111} facets on
the ends of nanowires [45]. Additional studies are
necessary to determine the facet-selective chemistry
that governs the anisotropic growth of nanowires from
other metals.

Metal nanowires can also grow through particle attach-
ment [47e53], wherein the seed crystals assemble into
one-dimensional structures to reduce their total surface
energy. The diameter of the nanowires produced by

oriented attachment is usually on the order of a few
nanometers (Figure 1e) [52], whereas nanowires that
grow through atomic addition usually have diameters
between 10 and 100 nm. Nanowires that grow through
oriented attachment are characterized by a wavy or
zigzag structure, with many planar defects such as twin
Current Opinion in Electrochemistry 2019, 16:19–27
boundaries and stacking faults perpendicular to the
longitudinal axis (Figure 1f) [53].
Metal nanowires as electrocatalysts
The surface-to-volume ratio of metal nanowires is smaller
than that of nanoparticles with the same diameter,
suggesting that the specific activity (per gram) of nano-
wires should be lower than nanoparticles. However,

nanowires can have a higher specific activity than nano-
particles because of their unique surface structure
[52,54e59]. Nanowires can also exhibit greater durability
than nanoparticles because of their ability to resist
Ostwald ripening, dissolution, and detachment from
conventional carbon supports [52,55e57,59]. In addition,
metal nanowire networks can form highly conductive,
free-standing structures that do not require carbon sup-
ports. Owing to these advantages, metal nanowires are
being explored as a promising alternative to conventional
nanoparticle electrocatalysts for electrochemical reactions

including oxygen reduction reaction (ORR) [52,54e
www.sciencedirect.com
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57,60e62], oxygen evolution reaction [63,64], hydrogen
evolution reaction [58,65e67], methanol/ethanol oxida-
tion [59,68e76], formic acid oxidation [70,77e79], and
CO2 reduction [37,80,81].

Atomic structure
The twin boundaries on the side of pentagonally twin-
ned nanowires (Figure 1d) and surface defects of
nanowires grown via particle attachment (Figure 1f) can
improve electrocatalytic performance
[55,59,60,78,80,82]. Li et al [80] demonstrated how

pentagonally twinned Cu nanowires improved the
selectivity of CO2 reduction (Figure 2). Unlike a poly-
crystalline Cu electrode that produced several products
including methane, ethanol, and ethylene (e.g.
ethylene: w23%, methane: w22%, H2: w21%, ethanol:
w10%, at the potential of �1.05 V vs. reversible
hydrogen electrode (RHE)) [83], 95% of the product
obtained using pentagonally twinned Cu nanowires was
methane at a potential more negative than �1 V (vs.
RHE) (Figure 2b) [80]. The Cu nanowires had a partial
current for methane two times higher than Cu foils

(Figure 2c). The higher methane selectivity was hy-
pothesized to be due to a higher density of twin
boundaries on the side of nanowires, which enhanced
the binding of the intermediate for CO2 reduction.
Figure 2

Pentagonally twinned Cu nanowires for CO2 reduction. (a) Transmission electro
reduction. (b) Faradaic efficiency for various products of CO2 reduction on Cu
from Cu nanowires and Cu foil. (d) Changes in Faradaic efficiency for methane
reduction. (f) Changes in Faradaic efficiency for methane and ethane and (g)
reduction. Reprinted with permission from Ref. [80]. Copyright 2017 America
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When CO2 reduction was performed for longer times,
the Cu nanowires lost their selectivity for methane and
produced more ethylene (Figure 2d) because of the
morphological degradation of Cu nanowires (Figure 2e).
A coating of reduced graphene oxide on the Cu nano-
wires preserved the methane selectivity (Figure 2f) by
inhibiting the morphological change of Cu nanowires
(Figure 2g).

In another example, the rhombic atomic structure of
jagged Pt nanowire surfaces increased the electro-
chemically active surface area (ECSA) 1.59 times
compared with conventional Pt/C [55]. Its specific ac-
tivity for ORR at 0.9 V (vs. RHE) was 7.2 times higher
than that of smooth Pt nanowires and 32.9 times higher
than that of Pt/C.

Alloyed nanowires
Alloying noble metals with non-noble metals is an
effective approach to improve electrocatalytic perfor-
mance through strain and ligand effects [84e87]. The
addition of a non-noble metal can modify the electronic

structure of noble metal nanowires and affect the
binding strength of reactants, intermediates, and prod-
ucts, thereby improving electrocatalytic performance. A
variety of alloyed nanowires including Pt- [52,54,56e
n microscopy (TEM) image of pentagonally twinned Cu nanowires for CO2

nanowires and (c) a comparison of partial reduction current for methane
and ethane and (e) the morphology of Cu nanowires (Cu NW) during CO2

the morphology of rGO-coated Cu nanowires (rGO-Cu NW) during CO2

n Chemical Society. rGO, reduced graphene oxide.
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58], Pd- [68,69], Ir- [62,76], and Ni-based [66] nano-
wires have been adopted to improve various reactions.

In one example, PtNiRh trimetallic nanowires with an
atomic ratio of 3.02:1.00:0.23 (Pt:Ni:Rh) were used for
ORR (Figure 3) [57]. The PtNiRh nanowires grew in
the<110> direction with {111} side facets (Figure 3ae
c) and had an average diameter of only 1 nm (Figure 3d).

The ECSAs of Pt, PtNi, and PtNiRh nanowires were
74.7, 89.8, and 106.4 m2/gPt, respectively. These ECSAs
are all larger than that of commercial Pt/C (67.9 m2/gPt)
because of the thinner diameter and lower PtePt co-
ordination number of the alloyed nanowires. The spe-
cific activity, that is, catalytic activity per unit surface
area, for ORR at 0.9 V (vs. RHE) was enhanced for the
PtNiRh (2.71 mA/cm2) and PtNi (2.34 mA/cm2) nano-
wires compared with Pt/C (0.28 mA/cm2) (Figure 3e).
The activity enhancement was attributed to compres-
sive strain and ligand effects from incorporating Ni and

Rh into Pt, which reduced the binding strength of
oxygenated species (Figure 3f). After 10,000 cycles of
accelerated durability testing, the PtNiRh nanowires
lost 12.8% of their initial mass activity. PtNi nanowires,
Pt nanowires, and Pt/C lost 54.3%, 21.5%, and 73.7% of
Figure 3

PtNiRh nanowires for the oxygen reduction reaction. (a–c) TEM images of PtN
Polarization curves for Pt/C, Pt nanowire/C, PtNi nanowire/C, and PtNiRh nan
Pt(111), PtNi(111), and PtNiRh(111). (g) The changes in the mass activity after
for Pt(111), PtNi(111), and PtNiRh(111). Reprinted with permission from Ref.
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their initial activity, respectively (Figure 3g). The
greater durability of PtNiRh nanowires was attributed to
the high energy required to form a Pt vacancy on
PtNiRh(111) relative to PtNi(111) or Pt(111)
(Figure 3h).

Hollow nanotubes
Another approach to boost electrocatalytic performance
is to use hollow nanotubes which present more specific
surface area for electrochemical reactions. Hollow
nanotubes can be synthesized via galvanic displacement

of nanowire templates [38,39,75,77,88]. In one recent
report, PtRuTe and PtPdRuTe nanotubes were synthe-
sized via galvanic displacement of Te nanowires [75].
The atomic composition of the nanotubes was easily
controlled by changing the ratio of Pt and Pd precursors.
The mass activity of the optimal PtPdRuTe nanotubes
for methanol oxidation was 1261.5 mA/mgPt, which was
2.2 times higher than that of Pt/C. The ratio of the peak
currents from the forward and backward scans was 20%
higher for PtPdRuTe nanotubes than Pt/C, indicating
the PtPdRuTe nanotubes were more resistant to

poisoning from carbonaceous species [75].
iRh nanowires. (d) The diameter and length of the PtNiRh nanowires. (e)
owire/C in O2-saturated HClO4 solutions. (f) The binding energy of OH on
durability testing. (h) The energy required for the formation of a Pt vacancy
[57]. Copyright 2018 American Chemical Society.
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Self-supporting metal nanowires
Carbon is widely used as a conductive support for
nanoparticle catalysts. However, carbon supports can be
corroded during electrochemical processes, leading to
the detachment of the electrocatalysts from the support
[73,89,90]. The degradation of carbon supports can also
produce CO when the electrode potential is more pos-
itive than 0.5 V (vs. RHE), accelerating the poisoning of
the electrocatalysts [73,89,90]. Because metal nanowire
networks do not require carbon supports to achieve high
electrical conductivity, these problems can be avoided

and better durability can be achieved
[39,43,73,77,91,92]. In one example, a free-standing Pt
nanowire membrane without carbon supports retained
82% of its initial ECSA, whereas Pt/C and Pt black
catalysts retained only 5% and 39% of their initial
ECSAs, respectively, after 3000 cycles of cyclic voltam-
metry [91]. The better stability of the Pt nanowire
membrane was attributed to the absence of electro-
chemical carbon corrosion and the greater resistance
of the Pt nanowires to Ostwald ripening compared with
Pt/C.
Three-dimensional nanowire networks
The high aspect ratio of metal nanowires enables the
fabrication of highly porous three-dimensional (3D)
structures via filtration [28,93], ice-template freezing

[94], electrodeposition [95,96], and drop casting [97].
In our experience, one of simplest ways of fabricating a
nanowire-based porous electrode is filtration. The
porosity (ε) of the nanowire felt made via filtration of
stiff nanowires is determined by the aspect ratio of the
nanowires, as described in the following equation [98].

ε ¼ 1� 2 lnðAspect ratioÞ
Aspect ratio

(1)

Parkhouse and Kelly [98] and Kim et al. (M.J. Kim et al.,
ChemRxiv https://doi.org/10.26434/chemrxiv.7468703.
v1) validated this equation experimentally using un-
cooked spaghetti and Cu nanowires, respectively. This
equation predicts that nanowires with an aspect ratio of
100 will have a porosity of 91%. The large void fractions
of nanowire felts, coupled with the small diameters of
the nanowires, suggest they can be used as flow-through
electrodes. Flow-through electrodes are used in redox
flow batteries [99,100], water treatment [101], and

chemical production [102e104] because of their high
mass transport coefficients and large surface areas per
unit volume. As the flow-through electrodes currently in
use (e.g. carbon paper) were all introduced over 40 years
ago, there may be room for improvement.

To quantify the performance of a flow-through elec-
trode, one can measure its mass transport-limited cur-
rent, IL, by Eq. (1) [105e107].
www.sciencedirect.com
IL ¼ nFAruC0

�
1� exp

�
� LkmAs

u

��
(2)

Here n is the number of electrons required for the reaction,

F is the Faraday constant, Ar is the cross-sectional area of

the porous electrode, u is the superficial velocity, C0 is the

concentration of reactant at the inlet, L is the thickness of

the porous electrode, km is the mass transport coefficient of

the electrode, and As is the specific surface area of the

electrode. IL increases as kmAs increases, so the higher the

kmAs, the better the electrode.

Recent results demonstrate that replacing carbon fibers
with Cu nanowires in a flow-through electrode increased

the kmAs up to 53.9 times at a superficial velocity of
0.5 cm/s (M.J. Kim et al., ChemRxiv https://doi.org/10.
26434/chemrxiv.7468703.v1). At an electrode thickness
of 1 cm, Eq. (2) predicts that the nanowire felt can
accommodate a 105 times faster flow rate than carbon
paper and obtain the same single-pass conversion of 0.9.
However, a reaction will likely be limited by charge
transfer kinetics before such high productivities can be
achieved. Even with the current limited by charge
transfer, a 278-fold increase in productivity for Cu ion
reduction and a 4.24-fold increase in intramolecular

cyclization were achieved with Cu nanowire felt relative
to carbon paper.

Metal nanowire felts can also be used to improve the
performance of Li batteries [94,97,108e110]. Active
materials with a large capacity for lithium ions usually
suffer from a volume change that quickly degrades the
capacity. The large voids in a nanowire composite elec-
trode of Cu and Si nanowires could accommodate the
volume change of the Si active material upon Li inter-
calation while retaining electrical contact, thereby

improving the retention of capacity [109]. In Li metal
batteries, a current collector made of metal nanowires
[94,97,108] has been shown to suppress the growth of Li
dendrites, which often results in short circuiting and
irreversible consumption of Li [111]. In one example, Li
deposition mainly took place in the voids of a 3D Cu
nanowire network, preventing Li dendrite formation
[97]. As a result, a stable columbic efficiency over 200
cycles (w98.6%) was achieved with the nanowire
network, while the columbic efficiency for Cu foil
dropped to 50% in 40 cycles.
Conclusion and outlook
This review introduced ways in which the unique
structure and morphology of nanowires can be used to
improve electrochemical processes. Metal nanowires
can improve electrocatalytic activity and durability
because of their ability to host numerous surface defects

and resist degradation. Further improvements in their
properties would be greatly aided by computer
Current Opinion in Electrochemistry 2019, 16:19–27
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simulations that can guide experiments to produce a
desired alloy composition and defect structure, as well
as the ability to synthesize such structures with high
precision at large scales. There remains a huge number
of electrochemical reactions in which the properties of
nanowires have not been tested. Most metal nanowires
from solution-phase syntheses are produced in the
presence of shape-directing agents, but there is little

research on how such agents affect the electrochemical
performance of nanowires. It is likely that the perfor-
mance of nanowire catalysts would be improved by a
cleaning step that is similar to that which is used for
cleaning nanoparticles [112]. Nanowires can also be
filtered from solution to create 3D flow-through elec-
trodes with the highest specific surface areas and mass
transport coefficients reported to date. Future work can
focus on creating nanowire felts from more durable
materials that can withstand the oxidizing conditions
widely used in electro-organic syntheses. The large pore

volume of 3D nanowire electrodes has facilitated im-
provements in capacity retention for lithium ion and
lithium metal batteries. Further improvements may
result from examining how the aspect ratio of metal
nanowires, and thus the porosity of the electrode, im-
pacts battery performance. Overall, metal nanowires
offer a new opportunity for researchers to design and
synthesize optimal electrode structures from the atomic
scale to the microscale, but the design rules have yet to
be written.
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