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ABSTRACT: Among the electrolyzers under development for CO2 electro-
reduction at practical reaction rates, gas-fed approaches that use gas diffusion
electrodes (GDEs) as cathodes are the most promising. However, the insufficient
long-term stability of these technologies precludes their commercial deployment.
The structural deterioration of the catalyst material is one possible source of device
durability issues. Unfortunately, this issue has been insufficiently studied in systems
using actual technical electrodes. Herein, we make use of a morphologically
tailored Ag-based model nanocatalyst [Ag nanocubes (NCs)] assembled on a zero-
gap GDE electrolyzer to establish correlations between catalyst structures,
experimental environments, electrocatalytic performances, and morphological
degradation mechanisms in highly alkaline media. The morphological evolution of
the Ag−NCs on the GDEs induced by the CO2 electrochemical reduction reaction
(CO2RR), as well as the direct mechanical contact between the catalyst layer and
anion-exchange membrane, is analyzed by identical location and post-electrolysis scanning electron microscopy investigations. We
find that at low and mild potentials positive of −1.8 V versus Ag/AgCl, the Ag−NCs undergo no apparent morphological alteration
induced by the CO2RR, and the device performance remains stable. At more stringent cathodic conditions, device failure
commences within minutes, and catalyst corrosion leads to slightly truncated cube morphologies and the appearance of smaller Ag
nanoparticles. However, comparison with complementary CO2RR experiments performed in H-cell configurations in a neutral
environment clearly proves that the system failure typically encountered in the gas-fed approaches does not stem solely from the
catalyst morphological degradation. Instead, the observed CO2RR performance deterioration is mainly due to the local high
alkalinity that inevitably develops at high current densities in the zero-gap approach and leads to the massive precipitation of
carbonates which is not observed in the aqueous environment (H-cell configuration).
KEYWORDS: CO2 electroreduction, gas diffusion electrodes, zero-gap electrolyzer, carbon monoxide,
exchange membrane electrode assembly

■ INTRODUCTION

Powering the electrochemical reduction reaction of carbon
dioxide (CO2RR) with renewable energy sources has emerged
as a compelling alternative to other approaches to CO2
valorization,1,2 toward meeting the increasing demand for
commodity/platform chemicals and thereby contributing to
efforts to close the anthropogenic carbon cycle.3,4 In recent
decades, significant progress has been made to understand the
reaction mechanisms of this process through the development
of cutting-edge catalyst materials that increase the activity
[partial current density (PCD) of generated products] and
selectivity (faradaic efficiency, FE) of the process. Strong cases
of commercial viability have been made for formate (HCOO−)
and CO production, which require the transfer of only two
electrons from the electrocatalyst to the CO2 reactant
molecule.5,6 Formate is efficiently formed on Sn-, Bi-, In-,
and Pb-based catalysts, whereas CO forms preferably on Ag-,

Au-, and Zn-based catalysts.7 CO is a particularly appealing
product because it can be used as a stockpile for subsequent
transformation either in the Fischer−Tropsch process8 or in
sequential electrochemical9 and fermentation methods.10

Using catalyst screening methods based on H-cell experi-
ments in which reactant CO2 gas is usually dissolved in an
aqueous bicarbonate-based electrolyte, a significant number of
works have reported that Ag-,11−13 Au-,14,15 and Zn-based16−18

cathode materials provide excellent CO selectivity and
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operational stability. Many works have also reported insightful
correlations between the use of a tailored catalyst nanostruc-
ture and electrocatalytic performance.19,20 In addition,
diverging from the bicarbonate-based electrolyte that was
once used almost ubiquitously, it has been found that highly
concentrated (potassium) hydroxide-based catholyte solutions
suppress the parasitic hydrogen evolution reaction (HER) and
improve the CO2RR performance because OH− ions exhibit
excellent ionic conductivity and reduce the activation energy
barriers for CO2 electroreduction.9,21−24 Through these and
other improvements, the field has reached a significant level of
maturity so that currently, the associated research is driven by
more ambitious endeavors, namely, scaling up the CO2RR
process to practical realization.10,25 Toward this end,
experimental platforms have been developed to circumvent
or attenuate the mass transport limitations that are intrinsic to
traditional H-type cell measurements26−28 and arise from the
low solubility of the dissolved CO2 reactant in aqueous
electrolytes. This pursuit opens a new avenue to the CO2RR
and related fields because the insights extracted from H-cell
measurements with either stationary or rotating disk electrodes
do not necessarily hold for their gas-fed homologues and both
approaches bear fundamental kinetic differences that must be
addressed to approach process commercialization.29−31

Among the various types of CO2 electrolyzers under
development, gas-fed approaches that use gas diffusion
electrodes (GDEs) as cathodes and that are inspired by
polymer electrolyte fuel cell technologies are considered to be
the most promising.1,21,30,32−36 Consequently, studies on Ag−
GDEs in contact with flowing alkaline electrolytes (Figure 1a)
have grown in popularity to achieve higher PCDCO and FECO
values as well as lower CO2RR onset potentials and to explore
possible enhancements to performance longevity.37−41 How-
ever, electrolyzer designs that rely on this cell configuration are
not without shortcomings that affect device performance and
stability, thereby overshadowing their intrinsic electrocatalytic
activity. These issues stem from (i) high ohmic losses owing to
the electrolyte layer separating the electrodes,30 (ii) electrolyte
percolation through the microporous layer (MPL) of GDEs
and concomitant carbonate salt precipitation,42,43 and (iii)
CO2 crossover from the cathodic to the anodic compartment
upon CO2 neutralization by OH− ions to HCO3

−/
CO3

2−.32,44,45

Motivated by this, a few recent works on alternative cell
designs with only an aqueous anolyte between the membrane

and anode and no liquid electrolyte layer between the catalyst
layer and (an)ion-exchange membrane [indistinctively called
exchange membrane electrode assemblies (MEAs) or cath-
olyte-free or zero-gap membrane assemblies, see Figure
1b]1,32,46 have been reported, enabling comparably reduced
ohmic overpotentials, enhanced stability, and excellent CO
selectivity.25,47,48 This zero-gap configuration not only affords
reduced ohmic losses but also attenuates complications that
arise from poor membrane hydration and electrode flooding at
high current densities, which are otherwise problematic to fully
gas-fed electrolyzers46,49 (note that exchange MEA electro-
lyzers may still suffer from the parasitic uptake of CO2 at the
interface of the cathode and anion-exchange membrane, thus
facilitating the undesirable CO2 discharge on the anode
surface).43,44,50 Nonetheless, one persistent hurdle that
precludes the commercial deployment of these technologies
is insufficient long-term device stability, which continues to fall
short of the minimum target value of 8 × 104 h.5 Efforts to
identify the factors that lead to process failure have been
undertaken, and strategies to alleviate such failures have been
proposed (e.g., appropriate selection of the reactor design,
electrode production method and hydrodynamics,1 manage-
ment of electrolyte percolation through the GDE,39,51 and
carbonation tolerance of the electrodes43,44).
In this context, another aspect that may also be a source of

device durability issues and that has been minimally
investigated using actual technical electrodes on which very
large current densities (>300 mA cm−2) are enforced is the
structural deterioration of the catalyst material.31,40 In
particular, studies of the catalyst morphological evolution of
Ag-based exchange MEAs induced by the CO2RR reaction
itself are lacking, as well as studies of the effect of direct
mechanical contact between the catalyst layer and anion-
exchange membrane (Figure 1b). To shed light on this
unexplored aspect of CO2RR on Ag−GDEs, we make use of
morphologically tailored Ag-based model nanocatalysts [Ag
nanocubes (Ag−NCs)] assembled on zero-gap GDEs to
establish correlations between structure, environment, electro-
catalytic performance, and degradation mechanisms under the
abovementioned most favorable CO2RR conditions (i.e., a
highly alkaline membrane adjacent to the catalyst layer). Sub-
monolayer surface coverages are purposely employed to
unambiguously address possible structure degradation at the
level of a single Ag−NC. Besides investigation of the catalyst
activity and selectivity, we devote particular attention to the

Figure 1. Schematics of the reaction interfaces in (a) liquid flow-cell electrolyzer and (b) exchange membrane electrode assembly (MEA) or zero-
gap assembly. (c) Depiction and assembly of the zero-gap flow cell used in this work for the CO2RR. (d) Cross-sectional view of the assembled cell
with reference and counter electrodes (CE and RE, respectively) immersed in the anolyte compartment. MPL in panels (a,b) stands for the MPL
on which the catalyst material (Ag−NCs) is embedded.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://dx.doi.org/10.1021/acscatal.0c03609
ACS Catal. 2020, 10, 13096−13108

13097

https://pubs.acs.org/doi/10.1021/acscatal.0c03609?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c03609?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c03609?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c03609?fig=fig1&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c03609?ref=pdf


time evolution of both the electrochemical performance of the
process and the material’s nanostructure induced upon CO2
electrolysis at large current densities, as enforced on the model
exchange Ag−MEAs. We find that our testbed enables among
the highest CO partial current densities and competitive FECO
values (−625 mA cm−2 and 85%, respectively) even at the
applied sub-monolayer catalyst coverages. Two distinct
electrode potential regimes were observed, each exhibiting
significantly different behaviors. At low and mild applied
potentials (E ≥ −1.8 V vs Ag/AgCl), stability prevails across
the PCDCO and FECO, electrolyzer performance, and catalyst
structure. Conversely, at greater cathodic potentials, the
process selectivity and activity severely degrade, leading to
performance failure even though the catalyst morphology
undergoes significantly less deterioration. Thus, this work
enables the deconvolution of catalyst structural stability from
system performance stability. Finally, a comparison with
standard H-type reference measurements reveals that CO2RR
product selectivity is influenced by electrolyzer design and,
therefore, that the knowledge developed using such batch-type
approaches should not be regarded as directly transferable to
gas-fed platforms. Overall, the results underscore that more
effort must be devoted to the understanding and optimization
of system design parameters (e.g., water management,
prevention of salt precipitation, CO2 flow rate, and electrolyte
flow rate) that have a more significant impact on the product
spectrum and longevity of the exchange MEA electrolyzers
than that of the structural degradation of the catalyst, which is
shown to be mild.

■ EXPERIMENTAL SECTION
Synthesis of Ag−NCs. Silver NCs were synthesized using

a previously reported method with minor modification.52 5 mL
of ethylene glycol (EG, J. T. Baker) was added to a 250 mL
two-neck flask preheated to 160 °C. A light N2 flow was
introduced just above the EG for the first 10 min, followed by
heating the solvent for another 50 min. Next, 3 mL EG
solution of AgNO3 (94 mM) and 3 mL EG solution containing
polyvinylpyrrolidone (PVP, Mw = 55,000, 144 mM) and NaCl
(0.22 mM) were simultaneously injected into the flask at a rate
of 45 mL/h, with the solution observed to turn yellow during
this process. Under continuous stirring at 160 °C, the solution
exhibited a color transition series from yellow to clear yellow,
brown, greenish, and finally ochre and opaque. The whole
process required 16 h to 24 h for completion. After the
solution had turned opaque, the reaction was quenched by
adding 22 mL of acetone to the hot solution, followed by
cooling in an ice-water bath. To purify the NCs, the solution
was first centrifuged at 2000g for 30 min, and then, the
precipitate was dispersed and centrifuged 3× in 10 mL of
deionized water at 9000g for 10 min per run.53 The product
was finally dispersed in 5 mL of deionized water for future use.
Preparation of Ag−NC Catalyst Ink. To prepare the

carbon-supported Ag−NC ink, 1.5 mg of the prepared Ag−
NCs and 0.26 mg of carbon black (Vulcan XC 72R, Cabot)
were separately dispersed in 10 mL of isopropanol (VLSI
Selectipur, BASF SE, Ludwigshafen, Germany) by 1 h of
sonication. Both suspensions were intermixed, sonicated for 1
h, and dried using a Rotary evaporator (Buchi R210, 45 °C, 85
mbar). The obtained carbon-supported Ag−NCs (85 wt %
Ag−NC and 15 wt % C black) were then redispersed in 1 mL
of isopropanol containing 50 μL of Nafion (5 wt %, 15−20%
water, Sigma-Aldrich). The resulting suspension was subjected

to sonication for 1 h yielding a homogeneous catalyst ink. For
the sake of reproducibility and comparison, catalyst inks were
also prepared with commercial Ag−NCs (NanoXact, nano-
Composix) and used for complementary CO2RR experiments.

Preparation of the Ag−NC−GDEs. The model catalyst
material in this work consists of cubic Ag nanoparticles (Ag−
NCs) with an average edge length of (113.1 ± 10.6) nm. The
Ag−NC−GDEs for all electrochemical and characterization
experiments were prepared as follows: a defined circular area of
7.07 × 10−2 cm2 on the GDEs’ hydrophobic surface (diameter
of 2 cm, Sigracet 39 BC, Fuel Cell Store) was modified by
dropcasting 50 μL of carbon-supported Ag−NC ink onto its
top surface. This catalyst solution was percolated through the
porous body of the GDEs by a vacuum filtration system placed
on the backside of the electrode, and subsequent drying at
ambient conditions was allowed for at least 30 min. Analysis by
inductively coupled plasma−mass spectrometry (ICP−MS) of
freshly prepared samples was used to determine the catalyst
mass loading, which amounted to ∼7.1 × 10−2 mgAg cm

−2.
Assembly of the Gas Flow Cell. The assembly and main

components of the zero-gap gas-flow cell employed in this
work to investigate correlations between the catalyst structure
and process performance of CO2RR to CO on Ag−NC−GDEs
are schematically depicted in Figure 1c,d. This assembly
consists of a stainless-steel cell body with the gas flow channels
used to feed the CO2 from the backside of the prepared Ag−
NC−GDEs mounted on the outermost location of the central
portion. Other components incorporated into the cell include a
current collector and a gas inlet and outlet to control the
supply of the CO2 reactant (99.999%, Carbagas, Switzerland)
and analysis of the gaseous products, respectively. All CO2RR
experiments were set up by placing a freshly prepared Ag−
NC−GDE on top of the gas flow channels, with its catalyst-
modified surface facing upward. Subsequently, a clean
hydroxide-functionalized Sustainion alkaline membrane (X37-
50 RT, Dioxide materials) and a poly(tetrafluoroethylene)
(PTFE) anolyte compartment were carefully placed on top of
the Ag−NC−GDE. A clamp was then used to ensure cell
tightness and mechanical stability. KOH electrolyte-supporting
solution (10 mL, 2 M; pH: 14.3, Sigma-Aldrich) was added to
the anolyte compartment, and a Ag/AgCl (3 M KCl, double
junction design, Metrohm) electrode and a Pt mesh (99.99%,
MaTeck) separated by a glass frit served as the reference and
counter electrodes, respectively. Note that the PTFE anolyte
compartment has a central orifice (7.07 × 10−2 cm2) in its
bottom part that provides direct contact between the
electrolyte and the underlying anion-exchange membrane,
while the Ag−NC−GDE is prevented from establishing
physical contact with the supporting anolyte. During
electrolysis, a humidified CO2 stream (16 mL min−1) was
continuously fed through the gas flow channels of the stainless-
steel cell body adjacent to the prepared Ag−NC−GDEs.

Electrochemical Reduction of CO2 (CO2RR) Using Ag−
NC−GDEs. All electrolytes were prepared using chemicals of
at least ACS reagent grade and deionized water (Millipore,
18.2 MΩ cm, 3 ppb toc). Both ECi-200 (Nordic electro-
chemistry) and Autolab PGSTAT128 N (Metrohm) potentio-
stats were used to perform all electrochemical experiments.
Electrochemical impedance spectroscopy measurements were
conducted before and after every CO2 electrolysis experiment,
and the results were considered to build the potential-
dependent product distributions and partial current densities
displayed and mentioned throughout the text. Potentiostatic
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CO2 electrolysis experiments were carried out at selected
applied electrode potentials for 1 h, during which time the
electrogenerated gaseous products were analyzed by online gas
chromatography (SRI Instruments) in sequential intervals of
10 min. The electrolyte was analyzed after the applied
electrolysis condition (post reaction) to quantify the produced
formate by means of ion-exchange chromatography (Metrohm
Ltd., Switzerland). For comparison, the performance of the
Ag−NC−GDEs was also tested by dedicated reference
measurements using 2 M KHCO3 as the electrolyte in both
the gas-flow cell and the conventional H-cell configurations.
For the H-cell measurements, a proton-exchange membrane
(Nafion 117, Sigma-Aldrich) separated the catholyte from the
anolyte, and the working electrode consisted of a rectangular
piece of carbon paper (0.8 × 3 cm) prepared in the same way
as the Ag−NC−GDEs for zero-gap measurements. The back
side and the edges of these electrodes were masked with the
PTFE tape, thus leaving an uncovered geometric surface area
of 0.2 cm2. A single junction Ag/AgCl electrode (saturated
KCl, Pine Research) and a Pt foil (2.5 × 0.8 cm, 99.99%,
MaTeck) were used as the reference and counter electrodes,
respectively. All electrode potential values in this work are in
reference to the standard Ag/AgCl3M reference electrode. The
data corresponding to the product selectivity and partial
current densities of all experiments are displayed in Tables S2−
S6. A thorough description of complementary experimental
details is presented in a previous publication.36

Scanning Electron Microscopy and Energy-Disper-
sive X-ray Spectroscopy Characterization. Morphological
characterization of the prepared Ag−NC−GDEs and assess-
ment of the spatial distribution of the Ag−NCs over the
samples was carried out with scanning electron microscopy
(SEM) imaging experiments. Imaging was performed before
(for the as-prepared electrodes) and after having sustained
defined CO2RR time intervals at selected applied electrode
potentials. The analysis was conducted sequentially with a
Zeiss Gemini 450 scanning electron microscope with both
InLens secondary electron and backscattered electron
detectors (Inlens SE and BSD detectors, respectively). An
accelerating voltage of 5 kV and a current of 200 pA were
applied at a working distance of 6.6−6.8 mm. The BSD
detector enables clear identification of the Ag−NCs along the
surface of the GDE’s MPL because this technique is highly
sensitive to the atomic number of the elements being imaged.
However, the images acquired with the InLens SE detector

provide better morphological resolution of the Ag−NCs. The
use of both imaging operational modes coupled to energy-
dispersive X-ray analysis (EDX) analysis made it possible to
track morphological catalyst changes induced by CO2
electrolysis and/or physical contact between the catalyst
material and anion-exchange membrane on the Ag−NC−
GDEs used. Complementary identical location (IL−SEM)
experiments were conducted on Ag−NC−GDEs for which
selected sample positions were imaged by the SEM instrument
before and after CO2RR experiments.
AZtec 4.2 software (Oxford Instruments) was used to

acquire EDX spectra and surface mappings of selected Ag−
NC−GDEs. An acceleration voltage of 10 kV and a current of
1.2 nA were applied at a working distance of 8.5 mm.

Catalyst Loading and Post-electrolysis Electrolyte
and Ag−NC−GDE Analysis by ICP−MS. Freshly prepared
Ag−NC−GDEs were immersed in 3 mL HNO3 (BASF SE,
Ludwigshafen, Germany) for 24 h to dissolve the Ag−NCs
embedded on their surfaces. The resulting solutions were
diluted with 3% HNO3 solution by a factor of 500 and were
then fed into a NExION 2000 ICP−MS instrument
(PerkinElmer) to obtain the Ag mass loading of the electrodes.
To identify possible Pt dissolution from the employed Pt
counter electrode during CO2 electrolysis, the following ICP−
MS and EDX control experiments were conducted. First, 10
μL of post-reaction anolyte (after CO2RR at −2.0 V for 60 min
in 2 M KOH) was diluted with 10 mL of 3% HNO3 solution
for ICP−MS analysis. No Pt dissolution was detected in two
independent measurements. Additionally, two post-electrolysis
Ag−NC−GDEs were immersed in 3 mL aqua regia for 24 h
and the solutions were diluted by factor 100 with 3% HNO3.
The corresponding ICP−MS spectra showed no signal other
than the background further confirming the absence of Pt on
the catalyst surface and supporting GDE. Finally, EDX analysis
of a Ag−NC−GDE sample after being subjected to similar
CO2RR conditions also excluded the presence of any Pt
deposited on the employed cathodes (see Figure S8).

X-ray Diffraction Catalyst Characterization. The
crystallinity of the Ag−NCs was determined by means of X-
ray diffraction (XRD) techniques (Bruker D8) using Cu Kα
radiation (λ = 0.1540 nm, 40 mA) generated at 40 keV. Scans
were recorded at 1° min−1 for 2θ values between 20 and 100°.
The samples were prepared by dropcasting Ag−NCs dispersed
in isopropanol on a graphite foil (0.13 mm, 99.8%, Alfa Aesar)
and then allowing the solution to dry under ambient

Figure 2. Representative SEM images at different magnifications showing the surface of an as-prepared Ag−NC−GDE cathode for CO2RR. (a,d)
Ag−NC catalyst sub-monolayer coverage on the MPL of the GDE. (b,c) and (e,f) reveal the well-defined cubic morphology of the Ag−NCs.
Images (a−c) were acquired using the BSD detector of the scanning electron microscope. (d−f) Correspond to the same sample surface areas
shown in the upper panels but were recorded with the InLens SE detector.
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conditions. The obtained XRD patterns were analyzed and
compared with JCPD (Joint Committee on Powder
Diffraction) for peak assignment.

■ RESULTS AND DISCUSSION

Characterization of Ag−NC−GDEs by SEM. Figure 2
shows representative SEM images of an as-prepared Ag−NC−
GDE. We present data acquired sequentially at the same
position with both the BSD and InLens SE detectors of the
scanning electron microscope. Clear distinction between the
Ag−NCs (bright) and the supporting GDE (dark) is provided
by the BSD detector, which is sensitive to the atomic number
of the analyzed material (Figure 2a−c). We observe a highly
dispersed sub-monolayer of Ag−NC surface coverage built up
by both single Ag−NCs and sparse groups of the particles
(Figure 2b,c). This observation implies that the electro-
chemical performance of the Ag−NC−GDEs will be partially
determined by parasitic side reactions (e.g., HER) taking place
also on catalyst-free regions. This is supported by the
combined SEM−EDX analysis of an as-prepared Ag−NC−
GDE sample displayed in Figure S1a−d. The images acquired
using the InLens SE detector (Figure 2d−f) offer improved
morphological resolution of single Ag−NCs and their cubic
shape, which is more easily observed at large magnifications

(Figure 2e−f). Statistical analysis of more than 400 Ag−NCs
provided an average edge length of 113.1 ± 10.6 nm, while
XRD characterization confirmed the high crystallinity of the
assembled Ag−NCs (Figure S1e,f). Recent theoretical and
experimental studies in H-cell configurations have reported the
superior and stable catalytic performance of cubic Ag
nanoparticles compared to their octahedral and spherical
counterparts.19,20

Electrocatalytic Performance of Ag−NC−GDEs for
CO2RR in Zero-Gap Electrolyzer. Potentiostatic CO2RR
experiments at selected applied potentials ranging between
−1.55 and −2.1 V versus Ag/AgCl were conducted for 1 h
using a dedicated Ag−NC−GDE as the cathode in a zero-gap
gas flow-cell configuration (Figure 1b−d) for every potential. A
favorable alkaline reacting environment was provided by the 2
M KOH electrolyte used in the anolyte compartment.42 Figure
3a displays the potential-dependent product distribution of the
gaseous products obtained after 10 min of CO2 electrolysis.
Besides the modest FECO observed at E ∼ −1.55 V, all
obtained FECO values at potentials more negative than −1.6 V
surpassed 65%, reaching a maximum value of approximately
85% at −1.8 V. Diverging from previous reports in which an
abrupt decay of FECO was observed with progressively higher
potentials/current densities, only a slight decrease of CO

Figure 3. Potential-dependent FEs (a) and PCDs (b) of the gaseous products obtained from CO2RR on the gas-fed Ag−NC−GDEs 10 min after
beginning CO2 electrolysis. Time evolution of the FECO at (c) mild (−1.5 V > E > −1.8 V) and (d) high applied potentials (−1.83 V > E > −2.1
V). Corresponding time evolution of the PCDCO at mild (e) and high (f) applied potentials. All experiments were carried out using 2 M KOH in
the anolyte compartment. The solid lines in all panels are guides to the eye to better observe the trends. The experimental error was accounted for
using ±5% error bars.
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selectivity was detected at the harshest applied cathodic
conditions due to an emerging formate contribution. However,
it should be noted that in those previous reports either a
bipolar membrane or a 0.5 M KHCO3 buffer layer was used
between the cathode and proton-exchange membrane.32,54,55

The efficiency of parasitic H2 stayed at FEH2 levels ≤10% for
potentials more negative than −1.75 V. The corresponding
dependence of the partial current densities PCDCO and PCDH2
on the enforced potentials is shown in Figure 3b. The PCDCO
increases steeply as the cathodic potential increases from
−1.54 to −1.87 V reaching highly competitive levels at
approximately −600 mA cm−2 (see Table S1). Further
cathodic polarization to approximately −2.1 V leads to a
slightly increased PCDCO reaching approximately −625 mA
cm−2. The PCDH2 did not exceed −50 mA cm−2 at all applied
potentials. These CO selectivities and partial current densities
stand out considering that for the as-prepared Ag−NC−GDEs,
a significant portion of the three-phase boundary layer where
the fed CO2, polymer electrolyte, and catalyst material meet is
constituted by the unmodified MPL of the support GDEs
(Figure 2a). Clearly, an increase of the catalyst loading would
lead to even better CO efficiencies and activities.31 However, it
is important to remember that a low catalyst surface coverage
on the GDEs was deliberately applied to successfully monitor
the morphological evolution of the Ag−NC catalyst at the
single nanoparticle level (see below).
Distinct temporal evolution of both FECOs and PCDCOs was

found to depend on the magnitude of the applied potentials.
Based on the temporal stability that these values promoted,
two apparent potential regimes were identified for FECO and
PCDCO. These regimes are highlighted by different color codes

in Figure 3. The panels corresponding to applied potentials
that sustained the above-described performance throughout
the duration of the experiments are highlighted by light gray
rectangles (−1.5 V > E > −1.8 V). The panels highlighted in
darker gray stand for results derived from applied potentials
that led to the decay of FECO and PCDCO values from their
initial levels. Figure 3 panels c and e show that both CO
selectivity and activity either improve or stay fairly stable across
the lifespan of the experiments, provided that the applied
potential was always less negative than −1.8 V. Conversely,
when the potential surpassed this value, both CO production
figures decreased over time. This decline was initially mild but
intensified abruptly after 30 min with an increase of the applied
potential (Figure 3 panels d and f).

Morphology Evolution of Ag−NC-Based Catalyst
Induced by CO2RR in Zero-Gap Flow Cell and H-Type
Cell. To determine whether the observed decay in device
performance during CO2RR at the specific time intervals and
applied potentials observed in Figure 3 panels d and f arises
from morphological transformations of the cathodes (through
morphological changes of the Ag−NCs or through their local
rearrangement along the GDE surface), we analyzed Ag−NC−
GDEs that were used for CO2RR under those same conditions
using ex situ SEM imaging experiments. Note that in the
present study, our Ag−NC catalyst was subjected to
significantly harsher cathodic conditions as compared to
those reported in ref 61 reaching over two orders higher
current densities and ∼400 mV more cathodic potentials.
In the first attempt, we employed the so-called IL−SEM-

based technique.56,57 This analysis is meant to provide the
structural evolution of electrocatalyst materials by comparing

Figure 4. Representative IL−SEM images of Ag−NC−GDE cathode surfaces before and after having conducted dedicated gas-fed CO2RR
experiments at −1.84 V for (a) 30 min (800 C cm−2) and (b) 60 min (1600 C cm−2) and at −2.07 V for (c) 13 min (800 C cm−2) and (d) 32 min
(1600 C cm−2) captured using both BSD and InLens SE detectors. (e) Elemental EDX mappings showing the spatial distribution of C (dark blue)
and Ag (yellow) corresponding to the sample location highlighted by the blue rectangle in (d). All CO2RR experiments were carried out using 2 M
KOH in the anolyte compartment.
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their morphology at the same sample location before and after
being subjected to electrolysis.56,57 We have previously
employed this strategy to successfully assess structure−activity
correlations caused by CO2RR on bare porous metal
electrocatalysts.17,58 Herein, we monitored the structural
evolution of Ag−NC−GDEs by IL−SEM for samples that
were subjected to high cathodic potential values at which CO
partial current densities reached −500 mA cm−2 and −620 mA
cm−2 (−1.84 and −2.07 V, respectively). For each applied
potential, the electrolysis was carried out until charge densities
of 800 and 1600 C cm−2 were passed on dedicated Ag−NC−
GDEs. These selected conditions are key for enabling
insightful correlation between the SEM-based post-electrolysis
studies and the data presented in Figure 3c−f.
Figure 4a−d presents representative IL−SEM images

corresponding to Ag−NC−GDEs that were subjected to
such CO2RR conditions. Surprisingly, comparison of SEM
images acquired before and after CO2 electrolysis show that
neither detachment nor degradation of the Ag−NCs seem to
arise regardless of the specific applied potential, passed charge,
or electrolysis duration. Post-electrolysis EDX mappings on
sample regions that were scrutinized by IL−SEM also hint at
the absence of cathodic corrosion and redeposition phenom-
ena (compare Figures 4e and S1b,d). Furthermore, comple-
mentary IL−SEM experiments in which five sequential CO2RR
cycles were applied to a Ag−NC−GDE sample at the most
stringent cathodic conditions are displayed in Figure S2.
Although this sample was electrochemically stressed more
severely (total cumulated Q = 13306 C cm−2 and t ∼ 4.5 h),
the combined IL−SEM−EDX analysis showed again no
apparent sample degradation. These results alone would
imply, at first sight, that the developed Ag−NC−GDEs tested

in the proposed zero-gap flow cell do not undergo
morphological degradation upon CO2RR at all and that the
undermined catalytic performance observed in Figure 3 at
harsh cathodic conditions should originate from another failure
source. However, an important aspect that did not need
consideration in our previously reported IL−SEM structural
CO2RR studies and that can be the source of SEM imaging
misinterpretation when studying colloidal nanocatalysts is the
influence of surfactants that are left behind on their surfaces
following their synthesis. Indeed, it has been shown that
electron beam irradiation on nanomaterials synthesized by
additive-assisted colloidal methods can lead to their improved
structural stability through transformation of the adsorbed
surfactants into dense carbonaceous shells.59 Moreover, local
surface passivation induced by SEM imaging has been
identified on PVP-capped Ag NCs that hinders diffusion of
Ag surface atoms.60 This suggests that IL−SEM experiments
might not accurately reveal the morphological evolution of
colloidal catalyst materials as the initial electron irradiation
conducted before the electrolysis step stabilizes and deactivates
the scrutinized locations. Therefore, a second series of SEM
imaging experiments were performed on the surface of Ag−
NC−GDEs that were subjected to the same CO2RR
conditions as shown in Figure 4 but whose surfaces were not
exposed to the electron beam of the SEM prior to the
electrolysis.
Figure 5a−b displays representative images of Ag−NC−

GDEs after having been subjected to −1.84 V. The Ag−NCs in
panels a and b have undergone insignificant morphological
changes after either 30 or 60 min of electrolysis (800 C cm−2

and 1600 C cm−2, respectively). Furthermore, the images
acquired with the BSD detector revealed the absence of

Figure 5. Representative SEM images of Ag−NC−GDE cathode surfaces after having conducted dedicated gas-fed CO2RR experiments at −1.84 V
for (a) 30 min (800 C cm−2) and (b) 60 min (1600 C cm−2) and at −2.07 V for (c) 13 min (800 C cm−2) and (d) 32 min (1600 C cm−2) captured
using both BSD and InLens SE detectors. (e) Elemental EDX mappings showing the spatial distribution of C (dark blue) and Ag (yellow) of the
sample location highlighted by the blue rectangle in (d). Red arrows identify Ag nanoparticles formed upon cathodic corrosion of the Ag−NC
catalyst. All CO2RR experiments were carried out using 2 M KOH in the anolyte compartment.
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material removal from the Ag−NCs that would be redeposited
in the form of smaller nanoparticles along the electrode surface
under the applied cathodic conditions.61 Importantly, excellent
electrochemical performance figures (PCDCO ≥ 300 mA cm−2

and FECO ∼80%) are attained and sustained if the potential
remains just positive of this applied value (−1.8 V vs Ag/AgCl,
see Figure 3 panels c and e). Because of the morphological
integrity of the actual catalyst observed under these conditions,
it is reasonable to think that the purely electrochemical
performance of the Ag−NCs−GDEs should be sustained over
long electrolysis periods if the other system parameters do not
lead to failure (e.g., salt precipitation, electrolyte penetration
into the adjacent GDE, etc). However, diverging from what
was observed in IL−SEM analysis, the electrodes exposed to
more demanding cathodic conditions revealed alteration of the
Ag−NC structure that may be linked to the deterioration of
PCDCOs and FECOs observed in Figure 3 panels d and f. Figure
5c shows representative images of a Ag−NC−GDE cathode
that underwent CO2RR at −2.07 V for 13 min (800 C cm−2).
Although the Ag−NCs maintained their overall cubic
appearance, the BSD−SEM images reveal smaller, randomly
distributed Ag nanoparticles (<5 nm) that arise from these
more stringent CO2 electrolysis conditions. The red arrows in
the upper right image of Figure 5c indicate the appearance of
particles adsorbed on regions of the GDE that were not
covered by the Ag−NC catalyst material prior to CO2RR. This
phenomenon was more evident on cathodes subjected to 32
min (1600 C cm−2) of electrolysis. Figure 5d demonstrates
that the particles formed near the Ag−NCs when treated with
these longer reaction times increased not only in size (∼10
nm) but also in population along the formerly catalyst-free
substrate regions. This is also supported by the EDX mapping
shown in Figure 5e acquired on the sample location
highlighted by the blue rectangle in Figure 5d. Additionally,
analysis of single Ag−NCs indicated that the material source
for these electrochemically formed particles stems mainly from
the cube’s vertices, eventually leading to the appearance of

small (111) planes of truncated cube-like particles (Figure S3).
Thus, it is clear that monitoring of the electrochemically
induced morphological evolution of the colloidal catalyst is
accurately described provided that the nanoparticles are not
passivated by electron beam irradiation prior to electrolysis (as
is the case in IL−SEM investigations). We suggest, however,
that the observed mild morphological alteration of the Ag−NC
catalyst on the GDE surfaces alone cannot be the physical
origin for the significantly affected PCDCOs and FECOs, as
shown in Figure 3 panels d and f, at potentials more negative
than −1.8 V.
To elucidate whether this decay in performance originates

instead from the high bulk pH value (∼14) of the electrolyte
used, reference CO2RR electrochemical and SEM experiments
similar to those shown in Figures 3 and 5 were carried out on
Ag−NC−GDEs, employing a significantly less basic 2 M
KHCO3 electrolyte (pH ∼8). These results are displayed in
Figures S4 and S5 following the same color code and image
representation as of Figures 3 and 5. Figure S4a,b shows the
corresponding FEs and PCDs of the electrogenerated gaseous
products. Besides a slightly lower PCDCO at most cathodic
applied potentials (−1.86 V ≥ E ≥ −2.14 V), all other
displayed quantities (PCDH2, FECO, and FEH2) exhibited the
same qualitative potential- and time-dependent behaviors after
10 min CO2 electrolysis, as discussed above, when the 2 M
KOH electrolyte was used (compare Figure 3c−f with Figure
S4c−f). The reduction in PCDCO at high applied potentials
might be related to the lower ionic conductivity of the HCO3

−

ion in comparison to that of OH− and its relative deficiency to
lower the CO2 activation energy barrier.42 Interestingly,
suppression of the parasitic HER was equally effective when
using both supporting electrolytes. The fact that the temporal
dependence of FECO and PCDCO as the electrolysis proceeded
revealed again a stability bifurcation that depended on the
potential window examined (Figure S4c−f) but not on the
specific bulk pH is not surprising. Indeed, it has been predicted
that the local pH adjacent to the three-phase boundary layer of

Figure 6. Potential-dependent FEs (a) and PCDs (b) obtained on the Ag−NC−GDE in the H-cell configuration. Both variables were recorded 20
min after the CO2 electrolysis experiment was initialized. Time evolution of the FECO (c) and PCDCO (d) at (−1.42 V ≥ E ≥ −1.94 V).
Representative SEM images of cathode surfaces after having conducted dedicated CO2RR experiments at −1.63 V for (e) 196 min (800 C cm−2)
and (f) 304 min (1600 C cm−2). Complementary SEM images of cathode surfaces subjected to −1.92 V are shown in Figure S6. These CO2RR
experiments were carried out with an H-type cell using 2 M KHCO3 as the electrolyte. The solid lines in panels (a−d) are guides to the eye to
better observe the trends. The experimental error was accounted for using ±5% error bars.
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a gas-fed GDE at CO2RR reaction rates above 50 mA cm−2

becomes rather similar for both neutral and highly alkaline
electrolytes due to the driven cathode half reactions (both CO2
and water reduction generate OH− as a byproduct).30 The
difference in the local pH at the cathode between both
electrolyte solutions under CO2RR reacting conditions at
targeted js ≥ 200 mA cm−2 might actually be negligible.30

Similar to the experiments conducted in the 2 M KOH
electrolyte, as shown in Figure 5, SEM analysis of a Ag−NC−
GDE after 60 min CO2RR at mild applied potential (E =
−1.84 V, 1600 C cm−2) in 2 M KHCO3 showed minor
structural degradation of the Ag−NCs (Figure S5). This
finding suggests that the performance decay in our gas-fed
zero-gap flow cell at large CO2RR rates might be more
significantly influenced by the increased local alkalinity rather
than the relatively minor structural degradation of the Ag−
NCs and the original bulk pH. Furthermore, an increasingly
high alkalinity at the three-boundary layer in GDEs has been
found to lead to issues related to electrolyte carbonation,
electrolyte penetration through the GDE body (electrode
flooding), and salt precipitation.39,43,44,49,51 Electrolyte in-
trusion beyond the MPL of the Ag−NC−GDEs at high
cathodic potentials also contributes to the decay in FECO and
PCDCO, as observed in Figure 3d,f and S4d,f, due to an
increase of the CO2 diffusion length. This is in agreement with
recently reported work by Leonard et al.43 who observed a
clear increase of flooding propensity and loss of the nominal
MPL hydrophobicity under stringent CO2RR reductive
conditions.
To further support this argument, we resorted to

investigations performed in conventional H-cell configurations
in which none of these detrimental aspects would influence the
supply of dissolved CO2 to the cathode through the liquid
electrolyte. Figure 6a,b summarizes these experimental results.
In comparison to the gas-fed experiments, significantly lower
PCDCOs are observed in all of the inspected potential window
due to the dominant effect of the mass transport limitations of
CO2 dissolved in the used 2 M KHCO3 electrolyte. In
addition, the use of this non-optimal,9,21−24 almost neutral
electrolyte leads to larger PCDH2s (as great as PCDH2 ∼
100mA cm−2) at high cathodic potentials relative to the values
observed in the zero-gap experiments. The potential-depend-
ent product selectivity shows an increase of FECO as the
potential varied from low to mild applied values (−1.4 V ≥ E
≥ −1.6 V), although in contrast to the observed trends for the
more technical approach, the CO efficiency significantly
decreases as the competing HER benefits at more negative
values. Moreover, in contrast to the results from the zero-gap
experiments, neither FECO nor PCDCO decays from its initial
value as the electrolysis reaction proceeds, regardless of the
applied potential (Figure 6c,d). Considering that the Ag−NCs
used in these H-cell experiments seem to have undergone a
similar degree of degradation and associated mechanism at
mild and high applied potentials relative to that of the zero-gap
counterparts (Figures 6e−f and S6), it seems evident that the
system stability issues acting at high potentials and longer
electrolysis times in the gas-fed configuration stem mainly from
a sub-optimal reactor design and the high local alkalinity at
high current densities. Indeed, we found a clear correlation
between the decaying FECO and PCDCO and occurrence of
GDE flooding and salt precipitation, which cause device
performance failure at high cathodic potentials in the gas-fed
approach. Figure S7a,b shows typical contact angle images for

water droplets on Ag−NC−GDEs before and after being
submitted to CO2RR at −2.07 V for 32 min. The decrease of
contact angle indicates that the barrier properties of the MPL
are to some extent undermined upon electrolysis. The
corresponding EDX spectra additionally show a clear decay
of the F signal due to degradation of the hydrophobic PTFE
coating of the MPL (Figure S7c). Moreover, Figure S8a
presents optical images showing the typical appearance of the
employed GDEs at different experimental stages (as-received
GDE, as-prepared Ag−NC−GDE and Ag−NC−GDE after
having sustained CO2RR at −2.07 V for 32 min and 1600 C
cm−2). The EDX spectra and mapping displayed in Figure
S8b,c further support that, under these drastic cathodic
conditions, carbonate/bicarbonate precipitation on the cata-
lyst-modified GDE surface and its periphery takes place.
Additionally, Figures S9 and S10 show that these undesired
events (flooding and precipitation) can even be observed on
the backside of such electrodes, irrespectively of the employed
electrolyte. We would like to emphasize that this kind of
massive salt precipitation is only observed in the GDE
approach, irrespective of the used electrolyte, but not in the
H-type cell configuration where the partial current densities of
CO formation are mass transport limited and remain stable
during electrolysis.

Comparison of CO2RR Product Distribution in Zero-
Gap Flow Cell and H-Type Cell. Finally, another important
aspect that requires attention is the spectrum of products
yielded from CO2RR processes, which might also be affected
by the specificities of the experimental approach employed
(cell design and environment).62 Along these lines, funda-
mental differences regarding the product selectivity were
observed between the gas-fed- and H-cell-based approaches. As
illustrated in Figure S11, formate was detected as a CO2
electrolysis product over a large potential window using
alkaline as well as almost basic electrolytes when the zero-gap
testbed was used. This finding is in agreement with reports by
Sargent, Sinton et al. on increased formate production on Ag−
GDEs in highly alkaline aqueous environments (Figure 1a).40

These authors proposed that the enhanced formate production
when using highly alkaline environments adjacent to the Ag−
GDE might be due to the limited ability of a temporary H3O

+

molecule that is believed to assist the first protonation step of
the adsorbed *COOH intermediate on the CO reaction
pathway.63 Accordingly, Figure S11 shows that both FEHCOO

−

and PCDHCOO
− were more prominent when the hydroxide-

based solution was employed and peaked at E ∼ −1.87 V,
amounting to non-negligible values of FEHCOO

− ∼20.1% and
PCDHCOO

− ∼148 mA cm−2, respectively. This result agrees
with a recent report by Seger et al. who identified formate as a
significant CO2RR side reaction using a zero-gap electrolyzer
combined with a basic anolyte at high current densities ≥200
mA cm−2.46 Conversely, our experiments in the H-cell yielded
only a minor formate contribution at the highest applied
potential (FEHCOO

− ∼2.6% and PCDHCOO
− ∼7.5 mA cm−2).

This result underlines the fact that the vast knowledge
developed through batch-type CO2RR experiments does not
necessarily translate to more practical approaches aimed at
industrial CO2 reduction. Therefore, more effort must be
devoted to understanding the particularities inherent to gas-fed
CO2RR platforms by going beyond a purely catalyst develop-
ment-oriented approach and focusing more on rational
electrolyzer design, engineering solutions, and process
optimization to provide more robust and stable gas−liquid
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interfaces. Precipitation and flooding phenomena might, for
instance, be prevented through incorporation of application-
tailored microstructures and wettability into novel GDE
designs.43 Encouraging efforts in this direction are being
made, for instance, by Schmid et al.64 who have recently
addressed the importance of optimized operating modes,
electrolyzer design, and materials selection that enable nearly
practical scale electrochemical CO2-to-CO conversion. One
key finding of these investigations that enables stable and long-
term CO2RR operation at −200 mA cm−2 is the attenuation of
salt precipitation, GDE flooding, and CO2 crossover to the
anode compartment by utilizing a carbonate-free, sulfate-based
neutral electrolyte in a liquid flow-cell electrolyzer.

■ CONCLUSIONS
We studied the performance of a model Ag−NC catalyst for
CO2RR to carbon monoxide on technical GDE in a zero-gap
configuration and highly alkaline environments. The system
exhibited remarkable CO2 to CO conversion figures in terms
of FE and PCD (FECO ∼ 625 mA cm−2 and PCDCO ∼ 85%)
even at sub-monolayer Ag−NC catalyst coverages on the
GDEs. Based on the temporal system stability that they
promoted, two apparent potential regimes were identified for
FECO and PCDCO. At mild applied potentials (−1.5 V > E vs
Ag/AgCl > −1.8 V), the CO2RR process improved or
remained stable over time reaching PCDCOs > 300 mA cm−2

and FE ∼ 85%. However, at greater cathodic potentials, both
CO production figures were initially more prominent but then
weakened over time. This decline was initially mild but
intensified abruptly after ∼30 min with increasing applied
potential. The morphological evolution of the Ag−NCs on the
GDEs induced by the CO2RR as well as the direct mechanical
contact between the catalyst layer and anion-exchange
membrane was analyzed by IL−SEM and post-electrolysis
SEM investigations. The former approach turned out to be
unsuitable for structural characterization of electrolysis-
induced changes on colloidal catalysts that bear a surfactant
shell on their surface left behind from the synthesis method.
On the other hand, post-electrolysis SEM studies enabled the
true morphological evolution of the catalyst that strongly
depended on the applied electrolysis conditions. Regardless of
the applied experimental conditions, no detachment of Ag−
NC particles from the GDEs was detected. It was found that at
low and mild potentials, the Ag−NCs undergo insignificant
morphological alteration. However, at harsher cathodic
conditions, smaller Ag nanoparticles begin to appear, adsorbed
on formerly catalyst-free substrate regions. The material source
of these electrochemically generated nanoparticles seems to
come from the corners of the Ag−NCs. The observed mild
cathodic corrosion of the catalyst leads to slightly truncated
cube morphologies. However, complementary CO2RR experi-
ments in a neutral environment on Ag−NC−GDEs conducted
in both zero-gap and conventional H-type cell configurations
suggest that system failure is rooted in more factors than the
observed morphological degradation of the catalyst. That is,
the high alkalinity level at the three-phase boundary layer
where the fed CO2, catalyst material, and polymer electrolyte
meet leads, to a significant degree, to the observed CO2RR
performance decline. The high alkalinity level inevitably
develops at the reaction interface in the zero-gap electrolyzers
at high cathodic reaction rates >300 mA cm−2 even when the
starting bulk electrolyte is neutral, thereby causing electrolyte
percolation through the GDEs, electrode flooding, and salt

precipitation. Thus, this work enables the deconvolution of
catalyst structural stability from system performance stability.
Although the application of higher catalyst loadings on the
GDEs would probably alleviate these issues, a more robust,
long-lasting solution to the intrinsic challenges posed by gas-
fed approaches must be proposed to near industrial CO2RR
deployment. Finally, as stated by some other recent works, we
suggest that CO2RR studies should increasingly be performed
using technical approaches because the conclusions extracted
from H-type cell experiments might not be directly translatable
to electrolyzer-based studies.
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(61) Huang, J.; Hörmann, N.; Oveisi, E.; Loiudice, A.; De Gregorio,
G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-induced
nanoclustering of metallic catalysts during electrochemical CO2

reduction. Nat. Commun. 2018, 9, 3117.
(62) Wang, G.; Pan, J.; Jiang, S. P.; Yang, H. Gas phase
electrochemical conversion of humidified CO2 to CO and H2 on
proton-exchange and alkaline anion-exchange membrane fuel cell
reactors. J. CO2 Util. 2018, 23, 152−158.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://dx.doi.org/10.1021/acscatal.0c03609
ACS Catal. 2020, 10, 13096−13108

13107

https://dx.doi.org/10.1038/ncomms10748
https://dx.doi.org/10.1016/j.jpowsour.2015.09.124
https://dx.doi.org/10.1016/j.jpowsour.2015.09.124
https://dx.doi.org/10.1021/acs.analchem.9b04999
https://dx.doi.org/10.1021/acs.analchem.9b04999
https://dx.doi.org/10.1021/acs.analchem.9b04999
https://dx.doi.org/10.1002/adma.201805617
https://dx.doi.org/10.1002/adma.201805617
https://dx.doi.org/10.1002/adma.201805617
https://dx.doi.org/10.1039/c8ee03134g
https://dx.doi.org/10.1039/c8ee03134g
https://dx.doi.org/10.1039/c8ee03134g
https://dx.doi.org/10.1021/acscatal.0c00297
https://dx.doi.org/10.1021/acscatal.0c00297
https://dx.doi.org/10.1021/acscatal.0c00297
https://dx.doi.org/10.1149/1.2801871
https://dx.doi.org/10.1149/1.2801871
https://dx.doi.org/10.1149/1.2801871
https://dx.doi.org/10.1007/s10800-011-0271-6
https://dx.doi.org/10.1007/s10800-011-0271-6
https://dx.doi.org/10.1021/acsenergylett.8b02035
https://dx.doi.org/10.1021/acsenergylett.8b02035
https://dx.doi.org/10.1021/acs.accounts.8b00010
https://dx.doi.org/10.2533/chimia.2019.922
https://dx.doi.org/10.2533/chimia.2019.922
https://dx.doi.org/10.2533/chimia.2019.922
https://dx.doi.org/10.1039/c5cp05665a
https://dx.doi.org/10.1039/c5cp05665a
https://dx.doi.org/10.1039/c5cp05665a
https://dx.doi.org/10.1021/acsenergylett.7b01096
https://dx.doi.org/10.1021/acsenergylett.7b01096
https://dx.doi.org/10.1021/acsenergylett.8b01734
https://dx.doi.org/10.1021/acsenergylett.8b01734
https://dx.doi.org/10.1039/c8ee01684d
https://dx.doi.org/10.1039/c8ee01684d
https://dx.doi.org/10.1149/2.010204esl
https://dx.doi.org/10.1149/2.010204esl
https://dx.doi.org/10.1149/2.010204esl
https://dx.doi.org/10.1002/celc.202000089
https://dx.doi.org/10.1002/celc.202000089
https://dx.doi.org/10.1002/cssc.201902547
https://dx.doi.org/10.1002/cssc.201902547
https://dx.doi.org/10.1149/2.1221816jes
https://dx.doi.org/10.1149/2.1221816jes
https://dx.doi.org/10.1149/2.1221816jes
https://dx.doi.org/10.1149/2.1221816jes
https://dx.doi.org/10.1039/d0ee00047g
https://dx.doi.org/10.1039/d0ee00047g
https://dx.doi.org/10.1021/acsami.9b13081
https://dx.doi.org/10.1021/acsami.9b13081
https://dx.doi.org/10.1021/acsami.9b13081
https://dx.doi.org/10.1016/j.jcou.2016.04.011
https://dx.doi.org/10.1016/j.jcou.2016.04.011
https://dx.doi.org/10.1002/ente.201600636
https://dx.doi.org/10.1002/ente.201600636
https://dx.doi.org/10.1039/c9ee00909d
https://dx.doi.org/10.1039/c9ee00909d
https://dx.doi.org/10.1039/c9ee01204d
https://dx.doi.org/10.1039/c9ee01204d
https://dx.doi.org/10.1016/j.jcou.2018.01.011
https://dx.doi.org/10.1016/j.jcou.2018.01.011
https://dx.doi.org/10.1016/j.jcou.2018.01.011
https://dx.doi.org/10.1021/la050887i
https://dx.doi.org/10.1021/la050887i
https://dx.doi.org/10.1021/la050887i
https://dx.doi.org/10.1038/nprot.2007.326
https://dx.doi.org/10.1038/nprot.2007.326
https://dx.doi.org/10.1021/acsenergylett.6b00475
https://dx.doi.org/10.1021/acsenergylett.6b00475
https://dx.doi.org/10.1021/acsenergylett.7b01017
https://dx.doi.org/10.1021/acsenergylett.7b01017
https://dx.doi.org/10.1016/j.elecom.2008.05.032
https://dx.doi.org/10.1016/j.elecom.2008.05.032
https://dx.doi.org/10.1021/jp303831c
https://dx.doi.org/10.1021/jp303831c
https://dx.doi.org/10.1021/jp303831c
https://dx.doi.org/10.1021/acscatal.7b02234
https://dx.doi.org/10.1021/acscatal.7b02234
https://dx.doi.org/10.1021/acsami.9b00875
https://dx.doi.org/10.1021/acsami.9b00875
https://dx.doi.org/10.1021/acsami.9b00875
https://dx.doi.org/10.1021/acs.langmuir.6b03721
https://dx.doi.org/10.1021/acs.langmuir.6b03721
https://dx.doi.org/10.1021/acs.langmuir.6b03721
https://dx.doi.org/10.1038/s41467-018-05544-3
https://dx.doi.org/10.1038/s41467-018-05544-3
https://dx.doi.org/10.1038/s41467-018-05544-3
https://dx.doi.org/10.1016/j.jcou.2017.11.010
https://dx.doi.org/10.1016/j.jcou.2017.11.010
https://dx.doi.org/10.1016/j.jcou.2017.11.010
https://dx.doi.org/10.1016/j.jcou.2017.11.010
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c03609?ref=pdf


(63) Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Dinh, C.-T.;
Edwards, J. P.; Kibria, M. G.; Bushuyev, O. S.; Kelley, S. O.; Sinton,
D.; Sargent, E. H. Hydronium-Induced Switching between CO2
Electroreduction Pathways. J. Am. Chem. Soc. 2018, 140, 3833−3837.
(64) Reinisch, D.; Schmid, B.; Martic,́ N.; Krause, R.; Landes, H.;
Hanebuth, M.; Mayrhofer, K. J. J.; Schmid, G. Various CO2-to-CO
Electrolyzer Cell and Operation Mode Designs to avoid CO2-
Crossover from Cathode to Anode. Z. Phys. Chem. 2020, 234, 1115−
1131.

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published on October 27, 2020, before all final
corrections were made. The corrected version was reposted on
November 6, 2020.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://dx.doi.org/10.1021/acscatal.0c03609
ACS Catal. 2020, 10, 13096−13108

13108

https://dx.doi.org/10.1021/jacs.7b13542
https://dx.doi.org/10.1021/jacs.7b13542
https://dx.doi.org/10.1515/zpch-2019-1480
https://dx.doi.org/10.1515/zpch-2019-1480
https://dx.doi.org/10.1515/zpch-2019-1480
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c03609?ref=pdf

