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Identical location scanning electron microscopy (IL–SEM) has become an important tool for electrocatal-
ysis research in the past few years. The method allows for the observation of the same site of an electrode,
often down to the same nanoparticle, before and after electrochemical treatment. It is presumed that by
IL–SEM, alterations in the surface morphology (the growth, shrinkage, or the disappearance of nanosized
features) can be detected, and the thus visualized degradation can be linked to changes of the catalytic
performance, observed during prolonged electrolyses. In the rare cases where no degradation is seen,
IL–SEM may provide comfort that the studied catalyst is ready for up-scaling and can be moved towards
industrial applications. However, although it is usually considered a non-invasive technique, the inter-
pretation of IL–SEM measurements may get more complicated. When, for example, IL–SEM is used to
study the degradation of surfactant-capped Ag nanocubes employed as electrocatalysts of CO2 electrore-
duction, nanoparticles subjected to the electron beam during pre-electrolysis imaging may lose some of
their catalytic activity due to the under-beam formation of a passive organic contamination layer.
Although the entirety of the catalyst obviously degrades, the spot mapped by IL–SEM reflects no or little
changes during electrolysis. The aim of this paper is to shed light on an important limitation of IL–SEM:
extreme care is necessary when applying this method for catalyst degradation studies, especially in case
of nanoparticles with surface-adsorbed capping agents.

� 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to the ever-increasing consumption of fossil fuels, gigatons
of CO2 are released yearly to the atmosphere, expediting global
warming [1]. A possible way of mitigating the effects of atmo-
spheric CO2 is to reduce it electrochemically. Electrochemical
reduction does not only allow CO2 to be regarded as a valuable
raw material instead of an environmentally dangerous waste, but
it may also provide a solution for the storage of excess renewable
(hydro-, solar or wind) energy [2].
Mostly due to this, electrochemical CO2 reduction —a process
that was first described more than 150 years ago [3]— has recently
become the forefront of electrochemical research [4]. Searching for
the term ‘‘electrochemical CO2 reduction” on the website of ACS
Publications yields 3334 research papers about this topic, only
from the past year; Google Scholar, when searched for the same
term and for the same period of time, gives > 17000 matches. A
majority of these publications are original research papers that
describe new catalyst materials, which —somewhat remarkably—
all exhibit excellent qualities when applied for CO2 reduction. This
means that by covering electrodes with the newly invented cata-
lysts, and carrying out electrolyses of solutions that contain CO2

dissolved in some form, high current densities of CO2 reduction
can be achieved at relatively low overpotentials, and the process
may in an ideal case yield only one or just a few desired products
[4].
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Compared to the tremendous amount of research invested in
the design of new electrocatalyst materials for CO2 electroreduc-
tion, technologies that operate on an industrial scale are still rare.
Undoubtedly, the most important obstacle that hinders the appli-
cation of newly developed catalysts on an industrial level is an
issue of stability: catalysts that may show remarkable features in
lab experiments tend to degrade and lose their performance over
prolonged use. This may especially be true for catalysts owing their
activity to a fine structure, such as colloidally synthesized nanopar-
ticles that are especially prone to degradation over long-time oper-
ation. In case of these catalysts, studying (electro-)mechanical
degradation and its effects on the catalytic performance has to be
the first step of technological up-scaling.

Although many operando techniques (e.g., X-ray diffraction,
scattering or absorption, as well as Raman spectroscopies [5,6])
can provide an insight to nanoparticle transformations occurring
during CO2 reduction, it is still more common to use ex situ electron
microscopic (EM) techniques to observe, in particular, the struc-
tural changes that electrocatalysts suffer during CO2 reduction.

In order to apply EM in an electrocatalysis study, the catalyst
has to be sampled before and after it is made subject to electro-
chemical treatment. When comparing images taken before and
after electrolysis, we usually work under two implicit assump-
tions: (i.) that the areas scanned before and after the electrolysis
are either physically the same, or are both representative of the
sample as a whole; and (ii.) that any changes we observe are
indeed caused by the electrochemical treatment and not by other
operations, e.g., the pre-electrolysis scanning of the sample, care-
less sample transportation, exposition to air or to chemicals, etc.

The former of the above two assumptions can readily be made
explicit, for example, if identical location scanning or transmission
electron microscopies (IL–SEM or IL–TEM) are employed. IL–TEM
was first described by a work of Mayrhofer et al. in 2008 [7], and
the first report on the application of IL–SEM by Hodnik et al. [8] fol-
lowed not much later, in 2012. In early studies, the catalyst mate-
rial was loaded on a TEM finder grid (made of gold) to facilitate
identical location imaging [7]. Later it was found that it is enough
to apply a small incision (a cross-like scratch) on other (e.g., gra-
phite) holders to relocate the scanned site after electrolysis, which
rendered the use of finder grids unnecessary. Due to the fact that
IL–EM is able to visualize changes of a catalyst surface, often down
to the details of individual nanoparticles, IL–EM found immediate
application in catalyst degradation studies on a variety of target
reactions [9,10].

In the field of CO2 electrolysis, IL–EM became a prominent
method of studying catalyst degradation [11–21], mainly because
it is considered (and, starting from its discovery, often advertised
as) a non-destructive method. It is usually assumed that if a given
catalyst preserves good performance characteristics over longer
periods of electrolysis, and neither IL–SEM nor IL–TEM reveal
any structural degradation, the catalyst is stable and can be con-
sidered a potential candidate for up-scaled (e.g., flow cell) studies
[15].

Unfortunately, however, the situation is not this simple, espe-
cially because, in some cases, the pre-electrolysis EM imaging does
affect the future catalytic performance of the sampled catalyst
areas. For example, in the literature of IL–TEM studies of electro-
catalysts, there are reports on the electron beam induced shrinkage
(as well as some ripening) of Pt nanoparticles used in fuel cells
[22]. Based on these results, Arenz and Zana strongly recommend
that in order to check if the electron beam changes the sample,
TEM analysis following the electrochemical measurements should
also be performed at pristine locations; i.e., locations which have
not been previously exposed to the electron beam [23].

For IL–SEM, probably based on the assumption that the electron
dose is much lower than in the case of TEM, no such warning was
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given, and it is indeed not likely that the beam used under SEM
conditions could induce similar sintering effects observed in
TEM. The sintering of nanoparticles may however not be the only
way an electron beam can alter a catalyst surface: another, equally
important phenomenon —namely, the under-beam formation of a
passive layer— should also deserve attention.

That electron bombardment of a conducting sample in vacuo,
where only slightest traces of organic vapours occur, can result
in the coverage of the sample with a non-conducting layer of poly-
merized carbon compounds was first noticed by Lariviere Stewart
[24] in 1934 — that is, four years before von Ardenne built the first
SEM [25]. That electron bombardment, especially during focusing,
can also cause changes to the surface of a sample inside an SEM
was first noticed as early as 1946 by Marton et al. [26]. Recently,
two reviews from Postek et al. [27,28] discussed some issues of
interpreting SEM images: the second part [28] was entirely
devoted to the issue of electron beam-induced specimen
contamination.

Postek et al. [28] pointed out that the origin of beam-induced
contaminations can both be the sample itself and the vacuum sys-
tem of the SEM. While the cleanliness of the latter can be signifi-
cantly improved (for example, by the replacement of diffusion
pumps with turbomolecular ones backed by dry backing pumps
in modern instruments), the history of the specimen prior to enter-
ing the vacuum system still remains important [28]. In case of
samples with significant organic content, organic molecules
remaining on the sample surface can break, undergo polymeriza-
tion, and get ‘‘pinned” to the sample by the beam during scanning
[28]. Depending on the electron dose, the formed carbonaceous
layer can grow at a rate of a few nanometers/seconds over the sam-
ple surface, even if only low accelerating voltages are used.

It is interesting to note that although under-beam contamina-
tion is a well-studied subject in the literature of SEM (see
[27,28], as well as the references cited therein), studies on the
effect of under-beam contamination/passivation on the future
electrochemical behaviour of the sample are scarce, and are mostly
focused on corrosion and not on electrocatalytic properties [29].
Yet, as we are going to demonstrate in this paper, under-beam pas-
sivation can practically disable the sampled part of a catalyst, espe-
cially if it contains organic remnants (capping agents) from the
synthesis process. While other parts of the catalyst (not affected
by the electron beam before electrolysis) remain active and very
often degrade significantly during the catalysed process, the part
of the sample affected by pre-electrolysis scanning remains intact,
and probably entirely passive, due to the carbonaceous film formed
on it under the beam.

Here we demonstrate, by IL–SEM studies on polyvinylpyrroli-
done (PVP) functionalized Ag nanocubes used as electrocatalysts
for CO2 reduction, a catalytic activity disabling effect of a passive
carbonaceous layer that is known to be formed under the electron
beam during pre-electrolysis SEM scans [30]. The aim of this paper
is to emphasize the necessity of extreme care being taken not to
misinterpret IL–SEM studies that seemingly demonstrate excellent
catalyst stability.
2. Experimental

Catalyst preparation. Ag nanocubes (Ag NCs) were prepared by
an upscaled synthesis route described elsewhere [31]. As support,
a glassy carbon plate (2 mm thickness, Alfa Aesar, type 1) was
mirror-polished (0.5 lm alumina suspension, Buehler), was thor-
oughly rinsed with ultrapure water and ethanol, dried, and masked
with an inert PTFE tape to leave an 0.8 cm � 1 cm geometric sur-
face area open for catalyst coating.
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In order to form a carbon-supported Ag NC catalyst, 5.6 mg of
the as-prepared Ag nanocubes [31] (in the form of powder) was
dispersed in 6 cm3 isopropanol (VLSI Selectipur, BASF) by a 1-
hour sonication. 1.5 mg of technical carbon powder (Vulcan XC
72R, Cabot, USA) was also dispersed in 3 cm3 isopropanol by 1-
hour of sonication, and the two suspensions were subsequently
mixed by sonicating for 30 min. The resulting suspension was
dried overnight under vacuum conditions, yielding a C-supported
Ag NC catalyst powder. This powder was re-dispersed in 1.5 cm3

of isopropanol containing 75 l‘ of a Nafion solution (Aldrich, 5
wt% dissolved in a mixture of lower aliphatic alcohols and water).
The obtained dispersion was subjected to sonication for 30 min,
and for each electrode, 25 l‘ of the resulted ink was drop-cast onto
the glassy carbon plate and dried in a vacuum oven.

An Ag NC catalyst without carbon support was prepared by dis-
persing 22 mg of the as-prepared Ag NCs in 6 cm3 isopropanol by
1-hour sonication and spin-coating 75 l‘ of this suspension onto a
glassy carbon support in three steps over 1 minute, using 1000
min-1 rotation rate on an Ossila spin coater.

Both the C-supported and the unsupported Ag NC catalysts
were exposed to a UV-ozone atmosphere (PSD Series, Novascan,
operated with air at atmospheric pressure) for 12 min.

For studies on a gas diffusion electrode (GDE, experimental
details were described elsewhere [15]) the suspension of carbon-
supported Ag NCs was drop-cast on the hydrophobic surface of a
Sigracet 39 BC (Fuel Cell Store) GDE, and the nanocubes were per-
colated through the porous body of the GDE by a vacuum filtration
system placed on the rear side of the electrode, followed by air-
drying at ambient conditions lasting 30 min. No UV-ozone treat-
ment was applied to the thus prepared, Ag NC-modified GDE.
The GDE was used as part of the gas flow cell described in [15],
combined with a Sustainion alkaline membrane (X37-50 RT, Diox-
ide materials) and an anode compartment containing 2 mol dm�3

KOH solution.
XPS Characterization. X-ray photoelectron spectroscopy (XPS)

studies were carried out using a Thermo ESCALAB 250 XI instru-
ment at a pass energy of 30 eV using monochromated Al K-a line
(hm ¼ 1486:7 eV). Charge correction was based on the position of
the C1s peak (284.8 eV). The XPS spectra were subjected to a Shir-
ley background subtraction and were analysed using the CasaXPS
software.

Electrocatalysis studies. For all electrochemical experiments, a
potentiostat/galvanostat (Metrohm Autolab 302N, The Nether-
lands) was used to control the potential, current density, and trans-
ferred charge. The electrolysis experiments were carried out using
a custom-built, air-tight, H-type glass cell. Apart from the working
electrode that was prepared as described above, the three-
electrode arrangement consisted of a ‘‘leakless”
Ag jAgCl j3 mol dm�3KCl reference (Pine) and a Pt-foil (1.5 cm �
0.5 cm, Goodfellow) counter electrode. For electrolyses,
0:5 mol dm�3 KHCO3 (ACS grade, Sigma-Aldrich) electrolyte solu-
tions were prepared with ultrapure water (Milli-Q by Merck Milli-
pore) and were saturated with CO2 (99.999%, Carbagas,
Switzerland). During the experiments, continuous gas flow was
maintained through the electrolyte solution. To avoid possible fluc-
tuations in CO2 solubility caused by a change in the ambient tem-
perature, all electrochemical experiments were performed at 20 �C,
by immersing the H-type cell into a thermostated water bath.
Automatic IR compensation was applied following the determina-
tion of the cell resistance by positive feedback. For the sake of com-
parability, all potentials given herein were converted to the
reversible hydrogen electrode (RHE) scale. The reported current
densities were normalized to the geometric surface area.

Gaseous products generated in the cell were detected by con-
necting the purging gas outlet to a GC analyzer (SRI Instruments
60
Multigas Analyzer No3). The continuous flow of the carrier CO2

gas through the electrolysis cell carried volatile reaction products
from the head-space into the sampling loops of the gas chromato-
graph. The partial current Ii, corresponding to the formation of a
gaseous product i, can be calculated [32] as

Ii ¼ xi ni F vm; ð1Þ

where xi denotes the mole fraction of the products, determined by
GC using an independent calibration standard gas (Carbagas); ni is
the number of electrons involved in the reduction reaction to form
a particular product (n ¼ 2 for both CO and H2 formation);

F ¼ 96485:3 C mol�1 is Faraday’s constant; and vm is the molar
CO2 gas flow rate measured by a universal flowmeter (7000 GC
flowmeter, Ellutia) at the exit of the electrochemical cell.

The Faradaic efficiency ðFEÞ of a given reaction product can be
determined by dividing the respective partial current, determined
from Eq. (1), by the total current measured electrochemically. A
thermal conductivity detector (TCD, for the detection of H2) and
a flame ionization detector (FID, for the detection of CO) were
applied in our studies. We found that in the studied system H2

and CO are the only two detectable products, accounting for
100%� 5% of the current density that was electrochemically mea-
surable. The electrochemically measured current densities were
thus subdivided into partial current densities by taking into
account the chromatographically determined concentration ratios,
as will be shown later in Fig. 2. During operation, aliquots were
analysed in intervals of 20 min during steady state electrolyses.

EM Measurements. EM analysis was conducted with a Zeiss
Gemini 450 SEM with an InLens secondary electron (SE) and a
backscatter electron detector (BSD). An accelerating voltage of
1.5 kV (probe current of 20 pA) and 5.0 kV (probe current of 120
pA) were applied for SE and BSD imaging, respectively. For high-
angle annular dark-field scanning transmission electron micro-
scopy (HAADF–STEM) combined with energy-dispersive X-ray
spectroscopy (EDX) and TEM imaging, an FEI Titan Themis
(equipped with a SuperEDX detector) was used with an accelera-
tion voltage of 300 kV.
3. Results and discussion

In colloidal nanoparticle synthesis, PVP is a widely applied
shape-control agent that promotes the growth of specific crystal
faces while hindering others [33,34]. In the synthesis of Ag NCs
used in this study, PVP —by strongly binding to the (100) facets
of Ag—, facilitated the formation of almost perfect nanocubes of
side lengths of about 100 nm, as shown in Fig. 1a. The XPS spec-
trum (Fig. 1b) of a catalyst prepared without carbon support clearly
exhibits a strong Ag3d signal, as well as a small peak that can be
assigned to the N1s excitation of the PVP molecules adsorbed on
the surface of the nanocubes. As shown in Fig. 1b, the applied
UV-ozone treatment resulted in a significantly decreased N1s peak
intensity. The peak has not disappeared, however, which hints that
some PVP still remained on the surface despite the UV-ozone
treatment.

Although the adsorbed PVP could, in principle, inhibit the cat-
alytic activity of the nanocubes [35,36], the UV-ozone treated, C-
supported Ag NCs showed good performance when applied for
the electroreduction of CO2. This is demonstrated by Fig. 2a, show-
ing the current density and the product distribution as a function
of the applied electrode potential. The current densities shown in
Fig. 2a were averaged for 1-hour electrolyses carried out in CO2

saturated 0:5 mol dm�3 KHCO3 solutions: for the electrolyses at
different potentials, fresh solutions and newly prepared catalysts
were applied.



Fig. 1. Scanning electron micrograph (a) and X-ray photoelectron survey (b) of the unsupported Ag NC catalyst. XPS spectra are shown in (b) for the as-prepared catalyst
(green curve) and for the catalyst made subject to UV-ozone treatment (red curve) as well. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. The electrocatalytic performance of carbon-supported Ag nanocubes, used as catalysts of CO2 electroreduction in a CO2-saturated 0:5 mol dm�3 KHCO3 solution. (a)
Potential dependence of the current density and the product distribution, as determined by means of online gas chromatography in an H-type cell for 1-hour electrolyses.
Each electrolysis (data points) were carried out using a freshly prepared catalyst and a fresh solution. Curves were created by interpolation. (b) Time dependence of the
catalytic performance, as determined by a single electrolysis experiment lasting 20 hours, with subsequent chromatographic head-space analysis (data points). The curve was
created by interpolation.
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It is known that on Ag, the primary product of CO2 reduction is
CO [37]. The same is true for the carbon-supported Ag NCs, with
the addition that compared to plain silver —e.g., a silver foil
[14]— the Ag nanocubes exhibit a broader overpotential range for
CO production. That is, only a little amount of H2 is formed at
potentials less negative than �1:1 V vs. RHE, and CO2 reduction
generally prevails over hydrogen evolution in the entirety of the
studied potential range �1:3 V < E < �0:7 Vð Þ. This observation
is in agreement with other reports on nanoparticulate silver cata-
lysts of CO2 electroreduction [38].

In order to check the stability of the catalyst, we chose the mod-
erate potential value of �1:0 V vs. RHE for a prolonged operation
study. As shown in Fig. 2b, the catalyst preserved both its overall
activity and its relative selectivity towards the production of CO
(the Faradaic efficiency of CO formation was about 80%) for an elec-
trolysis lasting 20 hours.

Nevertheless, since catalysts can maintain their macroscopic
activity even as they undergo partial deactivation or decomposi-
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tion [39], we carried out IL–SEM investigations of the working elec-
trode surface, which —although the overall activity remained
unchanged— indeed revealed some degradation.

In Fig. 3 we compare two scanning electron micrographs of the
same spot of a working electrode surface; one recorded before
(Fig. 3a) and one after (Fig. 3b) a 20-hours electrolysis treatment
at �1:0 V vs. RHE, similar to the one used to obtain the data of
Fig. 2b. Fig. 3a shows highly isotropic Ag NCs of a side length of
about 100 nanometers, distributed evenly on the supporting car-
bon matrix. As revealed by Fig. 3b, the nanocubes undergo some
slight deformation and shrinkage during electrolysis, and, more
prominently, some subnanometer sized particles appear on the
surface. EDX mapping (Fig. 3c) confirmed that these small particles
consist of silver, and are most probably formed as a debris of
nanoparticle degradation due to the mechanical impact of gas evo-
lution [16].

In order to get a clearer view of the degradation process of Ag
NCs, the above SEM experiment was repeated with a working elec-



Fig. 3. IL–SEM investigation of the degradation of carbon-supported Ag nanocubes, used as catalysts of CO2 electroreduction. The same spot of the working electrode surface
is shown just before (a) and right after (b) the electrode was used for a 20-hours electrolysis of a CO2-saturated 0:5 mol dm�3 KHCO3 solution at an electrode potential of�1:0
V vs. RHE. The formation of subnanometer sized Ag particles during electrolysis is revealed by the HAADF–STEM (gray-scale) and EDX scans (red-scale) in (c), recorded post-
electrolysis at a pristine location that has not been subjected to an electron beam before.

Fig. 4. SEM investigation of the degradation of non-supported Ag nanocubes, used as catalysts of CO2 electroreduction. The same spot of the working electrode surface is
shown just before (a) and right after (b) the electrode was used for a 20-hours electrolysis of a CO2-saturated 0:5 mol dm�3 KHCO3 solution. A different spot of the same
sample is shown after electrolysis in (c).

Fig. 5. SEM micrograph of a sample of non-supported Ag NC catalyst taken after a
40-hours electrolysis at �1 V vs. RHE in a CO2-saturated 0:5 mol dm�3 KHCO3

solution. A rectangular segment of the sample —shown in the image by its corners—
was also scanned before electrolysis. This pre-scanned area exhibits different
degradation features compared to the rest of the surface.
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trode prepared without the supporting carbon matrix (see the
Experimental section for details).

The as-prepared electrode surface is shown in Fig. 4a, exhibit-
ing cubic shaped Ag nanoparticles distributed on the glassy car-
bon electrode substrate. Somewhat surprisingly, the SEM image
of the same spot, recorded after a 20-hours electrolysis, shows
practically no degradation and the appearance of just a little
amount of the subnanometer sized particles, as shown in
Fig. 4b. What is even more surprising is that if we record an
SEM micrograph with the same configuration, just of a different
spot of the sample —that was not scanned before electrolysis—,
the picture gets quite different. Fig. 4c clearly shows slightly
deformed Ag nanocubes, along with a significant amount of Ag
debris formed during electrolysis.

The micrographs of Fig. 4 very clearly reveal an important pit-
fall of IL–SEM analysis; namely, that due to electron beam-
induced changes of the catalyst surface during the pre-
electrolysis scan, the sample may get at least partially deactivated
for the catalysed process. Due to its decreased electrocatalytic
activity, the pre-scanned area of the sample may show no or little
changes during the electrolytic process, while other spots (that
were not affected by pre-electrolysis SEM scanning) preserve
their activity and, in turn, exhibit significant degradation. In other
words, the often advertised nondestructiveness of IL–SEM [8,9]
should not be taken as granted — at least, not for all catalyst
types.

That the effect shown in Fig. 4 can indeed be explained by pre-
electrolysis electron beam–sample interactions is further demon-
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strated by Fig. 5, showing an SEM micrograph of a working elec-
trode surface obtained after electrolysis. Only a part (a
rectangular segment) of this sample was scanned by SEM before
electrolysis took place, and despite that the sample was exposed



Fig. 6. SEM micrographs of a catalyst surface, obtained using different magnifications and after different scanning times. The applied accelerating voltage was 1.5 kV.

Fig. 7. Electron microscopic images of Ag NCs after electron beam irradiation was carried out for 10 min with a scanning electron beam of 1.5 kV accelerating voltage. (a)
Secondary electron SEM image taken at 1.5 kV acceleration voltage. (b) Secondary electron SEM image obtained at 20 kV. (c) HAADF–STEM image taken at 300 kV. (d) TEM
bright field image taken at 300 kV.
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to the electron beam only for a short time, a marked difference can
be observed between the degradation features of the pre-scanned
segment and the rest of the surface area. Most notably, the cover-
age of the pre-scanned area with the subnanometer sized Ag par-
ticles is less pronounced, compared to other sites. This hints that
63
the electron beam exerts an effect not only on the Ag nanoparticles
but also on the underlying glassy carbon substrate.

Note that provided we refrain from long-time exposure of the
sample to the electron beam, the above-described electron beam
irradiation effect is hardly noticeable per se. Yet, as shown by
Fig. 5, even the irradiation damages that remained undetected dur-



Fig. 8. SEM micrographs of different magnification of a GDE modified by Ag NCs. Identical locations are shown prior to (a) and after (b) a potentiostatic electrolysis at �2:0 V
vs. an Ag j AgCl j 3 mol dm�3 KCl(aq) reference electrode consuming 1600 C cm�2. A different location is shown after the electrolysis in (c).
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ing pre-electrolysis EM scanning can prove significant when the
sample is used for electrolysis and scanned afterwards.

To demonstrate the irradiation effect in itself, we carried out
prolonged SEM scans on one of our catalyst samples. As revealed
by Fig. 6, the effect of contamination (as visualized by the growth
and even the apparent merging of the nanocubes) is more pro-
nounced when larger magnifications are applied (i.e., when the
beam is more focused) or when the sample is scanned for longer
times.

At first glance, the growing and subsequently merging nano-
cubes shown in Fig. 6 may resemble the coalescence of Pt nanopar-
ticles observed by Chorkendorff et al. under in situ TEM conditions
[22]. Note, however, that under TEM conditions, the accelerating
voltage and the electron dose are both much higher than in SEM.
Accordingly, the main feature that Chorkendorff et al. described
in their study was a shrinkage (and not a growth) of most nanopar-
ticles, with only a few of these displaying actual coalescence [22].
Shrinkage in this study was shown to be an effect of both the high
electron dose and the oxidizing atmosphere. None of these are
characteristic of our SEM measurements; thus in our case, it seems
more straightforward to presume that the beam has little effect on
the nanocubes themselves, and it is rather the under-beam forma-
tion of a carbonaceous passive layer what is seen in Fig. 6.

Although the SEM images recorded at an accelerating voltage of
1.5 kV may not allow a clear distinction between the core of the
nanoparticles and the contamination layer formed around them
(Figs. 6 and 7a), the contamination layer can be visualized by EM
scans at higher (20 kV) accelerating voltage (Fig. 7b). That under
the formed carbonaceous contamination layer the Ag nanocubes
preserve their original shape can be confirmed by the HAADF–
STEM and the TEM bright field images shown in Figs. 7c and d,
respectively.

It is of worth noting that the contamination layer is most prob-
ably formed by the PVP capping agent, remnants of which remain
adsorbed on the Ag nanocubes despite the applied UV–ozone treat-
ment, and then get polymerized and pinned to the electrode sur-
face by the electron beam [28]. Based on the electrocatalytic
degradation pattern shown by Fig. 5, we can assume that some
PVP may also remain on the substrate, forming there a carbona-
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ceous shell that is however presumed to be not as thick as on
the surfaces of the nanocubes, where PVP is primarily adsorbed.

The under-beam formation of the passive layer on the surface of
nanoparticulate catalysts seems to block the pre-scanned surface
even if entirely different settings, and much harsher electrolysis
conditions, compared to what was described before, are applied.
This is demonstrated by Fig. 8, where we modified a gas diffusion
electrode (GDE) with carbon-supported Ag NCs (this time, without
the application of UV-ozone treatment), and performed electrolysis
by applying a potential of �1:4 V vs. RHE, thus passing through a
total charge amount of 1600 C cm-2. While the identical location
SEM images of Fig. 8a and b show no trace of degradation, particle
deformation and the appearance of newly formed, small particles
is clearly shown by the SEM micrograph of Fig. 8c, recorded at a
random spot after the electrolysis. Although as pointed out in
[40], in fact any organic contaminations of a catalyst sample may
act as source of material for the formation of passive carbonaceous
crust layers, the prominent role of PVP in this process is further
supported by our numerous IL–SEM studies on PVP-free catalysts,
where no such contamination effects were ever seen [11–20].
4. Concluding remarks

No effort has so far been made to demonstrate the effect of
capping-agent related under-beam passive layer formation on
the catalytic behaviour of nanoparticle type electrocatalysts. This
is considered worrying, particularly because of the emerging pop-
ularity of IL–SEM-based stability studies where the pre-electrolysis
scanning can contaminate (and consequently disable) the catalyst
sample in a way that the post-electrolysis scan would deceivingly
show no degradation.

Using PVP-functionalised Ag nanocubes as model catalysts of
CO2 reduction, we demonstrated how under-beam contamination
(a carbonaceous, passive crust formed over the catalyst particles)
might account for artefacts in IL–SEM studies in such a way that
the experimenter is provided with false comfort with regard to
the stability of the catalyst. This paper was written with the aim
to direct attention to this possible pitfall of IL–SEM studies, which
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may especially emerge when IL–SEM is applied on electrocatalysts
prepared by a synthesis route involving capping agents.

Apart from the issues that PVP remnants can cause in the inter-
pretation of IL–SEM experiments, it should also be emphasized
that shape-forming surfactants may exert further unwanted effects
also on the essential catalytic properties. E.g., in case of the system
studied here we have to note that if no action (in our case, UV-
ozone treatment) is taken to remove (at least most of) the adhering
PVP remnants, this will negatively affect both the selectivity and
the stability of the catalyst. In our case omission of the UV-ozone
treatment resulted, for example, in the overall Faradaic efficiency
(toward CO production) dropping from � 80% to � 65%, and a fur-
ther dropping to below 50% over 2 hours of electrolysis (under con-
ditions similar to those applying for Fig. 2b). The removal of
capping agents may be based on plasma/thermal annealing [41]
(note that the UV-ozone treatment we applied here proved to be
far from ideal), or it may even rely on mere electrochemical meth-
ods. Namely, it was recently shown in two independent studies (by
our group [42] and by Pankhurst et al. [43]) that capping agent
remnants may effectively be removed by the harsh cathodic poten-
tials applied during CO2 electrolysis. Needless to say, the latter
‘‘operando activation” method [42] does not work for capping
agents baked to the catalyst surface by the electron beam in an
IL–SEM scenario.
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